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Abstract 

Shortage or ambiguity in diffraction data may limit 
the efficiency of structure analysis techniques. The 
joint probability distribution method has been used 
in order to estimate the values of non-measured 
diffraction magnitudes. Some experimental tests show 
the formulae have an efficiency which is promising. 

1. Introduction 

Sometimes the number of measured diffraction mag- 
nitudes is not sufficient for the satisfactory attainment 
of a crystal structure solution and refinement. 
Shortage of data occurs regularly in macromolecular 
crystallography (too many structural parameters to 
determine compared with the number of available 
independent observations), but occasionally it also 
occurs in single-crystal small-molecule crystallogra- 
phy when the diffracting crystal is of poor quality or 
is unstable under experimental conditions. Shortage 
of data is very critical in powder crystallography, 
where occasional or systematic overlapping of diffrac- 
tion effects does not allow experimental measurement 
of tens or hundreds of single diffraction amplitudes. 

The most effective way for overcoming the problem 
is to optimize and /o r  simultaneously to use some 
complementary experimental techniques (e.g. low- 
temperature apparatus or synchrotron radiation or a 
combination of X-ray and /o r  neutron and /o r  electron 
diffraction etc.). Often such techniques are not 
immediately available and the practical problem may 
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be that of predicting the values of some non-measured 
diffraction amplitudes by exploiting the measured 
data as prior information. For example, if data up to 
(sin 0)/)t = Pl are available, one may try to predict 
the amplitudes in the range/22-  Pt with p2 > p~. The 
problem may be of great importance for crystal-struc- 
ture-solution methods. In Patterson techniques such 
supplementary information can make the deconvol- 
ution of the Patterson map easier. In direct methods 
it will make the phasing process and the identification 
of the correct solution more efficient. 

The simplest way to predict the value of a non- 
measured intensity with vectorial index h is to use 
Wilson's statistics. Expectations are 

(IEhl)=(2/zr) 1/2 for centric structures ( l a )  

(IEbl) = (rr /2)  1/2 for non-centric structures. ( lb )  

Relations ( la ,  b) are too poor to be used for most 
practical purposes. Probabilistic expressions for 
estimating I Ehl from all the most reliable quartets in 
which h is a cross term were presented by Van der 
Putten, Schenk & Tsoucaris (1982). More recently, 
David (1987) suggested a formula which relies on the 
fact that a Patterson function P(u) is a positive func- 
tion as well as pE(u)" Sayre's (1952) squaring method 
was then applied. David's conclusive formula is 

(I Fhl 2) --~ Y. I Fd=l Fh-kl =. (2) 
k 

Even if of large interest, (2) suffers from two limita- 
tions: 

© 1991 International Union of Crystallography 
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(1) Sayre's method is strictly applicable to equal- 
atom structures. Therefore, a Patterson map, with its 
very large origin peak, does not comply with Sayre's 
hypotheses. The use of origin-removed Patterson 
functions could improve the situation, but in this case 
equation (2) is no longer valid; 

(2) Sayre's equation has asymptotical validity; i.e. 
it requires a rather large number of triplets. 

A probabilistic rather than an algebraic relation- 
ship among structure-factor magnitudes gives a better 
fit in practical situations where only a limited number 
of triplets is available. In accordance with this con- 
sideration the first aim of this paper is to provide a 
probabilistic basis for estimating diffraction magni- 
tudes given prior information on other magnitudes. 
Centric and non-centric crystals will be taken into 
account and some practical tests will be presented. 

2. The probabilistic estimation of IEhl in non-centric 
crystals 

Let us assume that the atomic coordinates are the 
primitive random variables, uniformly distributed in 
the unit cell. Then the joint probability distribution 
function for three complex-valued normalized struc- 
ture factors El = Eh,, E2 = Eh~, E3 = Eh 3 (hi + tl2 + h3 = 
0), up to and including terms of order N -I/2, is given 
(Hauptman & Karle, 1953; Cochran, 1955) by 

P(RI, R2, R3, ¢1, ¢2, ¢3) 

2 ~- 7r -3R, R2R 3 exp {-(R~ + R2 + R~) 

+ 2N-~/2RI R2R3 cos (¢i + ¢2 + ¢3)} 

where G = R~ exp (i¢~). Then 

P (R , ,  R2, R3)=8R,R2R3 exp {- (R~ + R ] + R32)} 

and 

x lo(2N-I/2R I R2R3) 

P(R,IR2, Ra)-~2R, e x p ( - R  2-R2R3/N)2 2 

x Io(2N-'/2R,R2R3) (3) 

are obtained. 
The first moments of (3) may be calculated via the 

formula 

S x" exp (-ax2)lo(qx) dx 
o 

= r [ ( ~  + 1)1211(2a ('~+')/2) 

x ,F , [ ( - /x  + 1)/2; 1; -q2/4a] exp (q2/4a) 

where F is the gamma function and ~Ft is the con- 
fluent hypergeometric function. We obtain 

(R,IR2, Rs)=½7r '/2 ,F,(-½; 1 ; - R E R ~ / N ) .  

If R 2 2 2R3/N is sufficiently small then ~F~ may be 
expanded as 

l + R~R23/2N 4 4 2 - R 2 R 3 / 1 6 N  + R 6 R 6 / ( 9 6 N ) - . . . .  

The convergence is not fast: a rough approximation 
gives 

(R,IR2, R3)---½rr l /2[ l+(2N)- 'R 2 2 2R3]. (4a) 

More immediate is the estimation of R~: 

(R~IR2, R3) , F , ( - 1 ;  1 2 2 ,R 2 2 ~-- ; R2R3/ N)  = 1 + N -  2R 3. 

(4b) 

If prior information on R2 and R3 is not available Rj 
and R~ are expected to coincide with values provided 
by Wilson's theory. However, when this information 
is available (RtIR2, R3) and (R~IR2, R3) are always 
larger than the values suggested by Wilson. In prac- 
tice, small R values cannot be identified by (4a) and 
(4b). 

An alternative mathematical approach may be 
used. The characteristic function of the distribution 
may be expanded in Taylor series up to and including 
N - ' - o r d e r  terms and its Fourier transform may be 
calculated. Then [Naya, Nitta & Oda (1965); but see 
also Giacovazzo (1976), where the three-variate distri- 
bution may be obtained as a marginal of a seven- 
variate one], 

P(RI,  R2, R3, ~ ! ,  ¢2, ~3) 

= 7r-3R~R2R3 exp [ - ( R ~  + R 2 + R2)] 

x { 1 +2N-I/2RIR2R3 cos (¢1+¢2 + ¢3) 

N - !  [ 11~2 12P2 D2 + ,~.!,~2,~.3 COS 2(¢~ + ¢2+ ¢3) 

(5) 

where L4(Ri) =R~-4 4R~+2.  In (5) terms of order 
larger than N -~ have been omitted. 

The marginal distribution P(R1, R2, R3) may be 
obtained by integrating (5) over ¢~, ¢2, ¢3: then the 
conditional distribution 

P( R,IR2, R3) ~- 2R, exp ( -  R~) 

x {1 + QZ~[ - (4N)  - '  L4(R,) 

+ N - i  2 2_ ( R , - 1 ) ( R ~ - I ) ( R 3  1)]} (6) 

is obtained, where 

QL = 1 -4N- ' [L4 (R2)+  L4(R3)]. 

Distribution (6) reduces to Wilson's distribution 
(extended to N- t -o rde r  terms) 

P(R, )  = 2R, exp ( -R2){  1 - ( 4 N ) - '  L4(R,)} 

when prior information on R2 and on R3 is not 
available. 
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From (6) the following conditional expected values 
are obtained: 

(RIIR2, R3) = ½7rl/2{1 + QL1[(16N) -1 
2 + ( 2 N ) - ' ( R z  z -  1 ) (R3-  1)]} 

----- 1 7 r l / 2 { 1  -4- (2QLN)-'( R 2- 1)(R 2 -  1)} 

(7a) 

(R~]R2, R3)=l+(QLN)-~(R22-1)(R23-1 ) (7b) 

which may be compared with classical Wilson's 
values 

(RI)=  rr'/2/2, (R~)= 1. 

According to (7a) and (7b), if R2 and R 3 a r e  both 
larger than unity then RI and R~ are expected to be 
larger than 7r~/2/2 and 1 respectively; they are ex- 
pected to be smaller than zr~/2/2 and 1 respectively 
if R2 is large and R 3 is small or vice versa. The triplet 
contribution is however of order N -I, too small to 
be useful in practice. The obvious suggestion is to 
consider the more complex distribution 

P(Rn, ~Oh, {Rk, Rh-k, ~ok, ~0h-k}) 

where k varies over reciprocal space. Such a distribu- 
tion involves quartet phase relationships. If they are 
neglected and if each triplet is assumed to give a 
contribution to the estimation of Rh independent of 
the others then 

P( Rh, { Rk,, Rh-k,}) 

~I-I [~-~g,,  exp (-R2.)]{14-(g 2 -  1)N -I 
n 

x~. ( R ~ - I ) ( R ~ _ k - 1 ) - ( 4 N )  ~. L4(R.)} 
k n 

from which 

(Rd...) = ½¢r'/~{ 1 + ( 2 N )  -! 

( R 2 -  1)(R2-k-- 1) / 

(8a) 

(R~,- 1)(R~,_k-- 1) (R~I . . . ) -  1 + N - I )  -'. 
1-(4N)-I[  L4( RO + L4(Rh-k)]" 

(8b) 

3. The probabilistic estimation of led in centric 
crystals 

If the exponential form of a trivariate distribution 
(up to N-I/2-order terms) is used in P1 then 

P (R , ,  R2, R3)--- (2/rr) 3/2 exp [ - ( R ~  + R~ + R])] 

x cosh ( R I R2R3 N-i/2) 

and 

P( R,IR2, R3)= (2/ rr) '/2 exp ( -  R~/2- R 22R3/2N)2 

x cosh (RIR2R3N-1/2). 

Further calculations bring results equivalent to (4a) 
and (4b). Therefore, in centric crystals we also prefer 
to use the distribution arising from the Fourier trans- 
form of the expansion in Taylor series of the charac- 
teristic function. The result is 

P(R,[R2, R3)= (2/17") '/2 exp ( -R~ /2 )  

x {1 + Q~t '[-(8 N)- ' / - /4(R,)  

+ ( 2 N ) - ' ( R  2 - 1 ) ( R  2 -  1)(R3 z -  1)]} 

where H4(Ri)=R~-6R~+3 is the Hermite poly- 
nomial of order four and Qn = 
1 -- (8  N ) - l [  H 4 ( R 2 )  -t- H4(  R 3 ) ] .  Accordingly, 

(RhI{ Rk, Rh-k}) 

=(2/ rr)'/2{ l + 2N -' 

( R ~ -  1)(R2-k-- 1) / 
× ~  1 _ (8 N ?  ii H-f(~0 + ~_/~'~ Rh_0 ] j (9a) 

(R~I{Rk, R,-k}) 

( g ~ -  1)(R2_k- 1) 
1 4- N - |  

1 - (8 N ) - ' [ / / 4 ( R k ) +  H4(Rh_u) ]" 

(9b) 

4. Experimental and conclusions 

In order to check the efficiency of (8a, b) and (9a, b) 
we have used nine structures, the code names of 
which, together with relevant crystallochemical data, 
are shown in Table 1. GEN1 and GEN2 are model 
structures: their diffraction magnitudes were gener- 
ated in order to check data without errors up to the 
desired (sin 0)/A limit. PGE2, SKN1, LOGANIN 
and FEGAS are non-centrosymmetrical real struc- 
tures whose data were collected by single-crystal 
techniques. SALEX, PIC and TIPORF are centro- 
symmetrical structures: data for the last two were 
collected by powder techniques and synchrotron 
radiation. 

The first result of the tests is that (8) and (9) are 
rather insensitive to the presence of the scaling func- 
tions L 4 and /44 respectively. Therefore, to a good 
approximation it may be stated that, for both centric 
and non-centric crystals, 

(R~,I . . . )=I+N-'Y~(R~-I)(R~,_k-1),  (10) 
It 

while it is 

( R d . . . ) =  ~7r'/2[ 1 + (2 N ) - '  Y. (R~,- 1 ) (R2_k-  1 )] 
k 

(lla) 
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Table 1. Code name, space group and crystallochemical 
data for the test structures 

C o d e  

G E N I  
G E N 2  
PGE2 (~) 
S K N I  (2~ 
L O G A N I N  ~-~) 
F E G A S  ~a~ 
SALEX ~51 

Space 
group C h e m i c a l  formula  Z 

PI  C7 1 
P2 ~ Pb2Oa 4 
P1 C2oH3205 1 
P3 t CTHI6CINO 4 3 

P212121 C17H2601o 4 
P63/mmc Fe2Ga2S 5 2 

P3 K3.86Na5.3o( H30+ )o.84 . - 

Fe63+O2(SO4)t2.17.08 H20  1 
P I  PbC~O4 2 

14/m CaaH28NaTiCI2 2 

PIC (6) 
T I P O R F  t71 

References: (1) DeTitta, Langs, Edmonds & Duax (1980); (2) unpublished; 
(3) Jones, Sheldrick, Gliisenkamp & Tietze (1980); (4) Cascarano, Dogguy- 
Smiri & Nguyen-Huy Dung (1987); (5) Scordari  & Stasi (1990); (6) 
Christensen & Lehmann (1989); (7) Christensen, Grand, Lehmann & Cox 
(19901. 

for non-centric and 

(Rhl . . . )  = (2/Ir)'/2[ 1 + (2 N ) - '  E ( R ~ -  1)(R~_k- 1)] 
k 

(116) 

for centric crystals. Accordingly, experimental results 
will refer to the use of (10) and (11) rather than to 
(8) and (9). 

Since the number of observations is finite the num- 
ber of triplets involved in (11) varies according to h. 
We have always used in our calculations the full set 
of the triplets experimentally available. Due to the 
mathematical approximations introduced in the prob- 
abilistic approach described in § 3, negative estimates 
for Rh and for the variance can be obtained. We have 
therefore decided to avoid any further use of the 
variance in the calculations. Furthermore, we also 
decided to normalize calculated Rh values with 
respect to the number of involved triplets 
[ L ( 2 N ) - ' ( ( R ~ - l ) (  2 Rh-k--1)) has been used in the 
formulas rather than (2N)  -1 ~k (R~,-1)(R2h-k-1) ,  
where L is a scale constant] and to rescale them under 
the constraint that the average of the R~'s must be 
unity. 

As a first application we have estimated for SKN1 
the values of R in the (sin 0)/A range 0-62-0"63 ]k-' 
by exploiting on the right-hand side of ( l l a )  data 
measured in the range 0-0.62 A- ' .  Predicted and true 
values are compared in Table 2. Estimated magni- 
tudes show a remarkable fit to true ones. 

The general efficiency of the formulas may be 
deduced from the values of the residual 

RES = EIRob~-- Rc.,ci/E Robs. 
h h 

In Table 3 for each test structure the upper limit of 
(sin 0)/A and two RES values are given: for RESw 
and RES,,  R~.~lc is calculated according to (1) and 
( l l a ,  b) respectively. Unlike in Table 2, in Table 3 
the RES values refer to all the measured data. 

Table 2. S K N I :  predicted (R,.,,z,.) and true values 
( R,,b,) of normalized amplitudes in the sin 0 /h  range 

0.62-0.63 ,~-' 

Rcalc 
2.13 
2-12 
i .96 
1.91 
1-73 
1.64 
1.56 
1.52 
1.41 
1.33 
1.26 
1.21 
1.16 
1.15 
1-15 
1.14 
1-14 
1.09 
1-08 
1.05 

Robs 

1-75 
1.57 
!-25 

-57 
-58 
.17 
'05 
.05 
.11 
' i 0  

0-67 
0-55 
0.93 
0"59 
0.22 
0.46 
1.14 
0-83 
0"56 
1.19 

Rc.lc Robs Relic Rob~ 

0 '99 1 "00 0"55 0 '50 
0"95 0"87 0'53 0"33 
0 '93 0 '50 0"52 0"70 
0"89 0"i6  0"52 0 '79 
0'85 0"68 0"49 0"40 
0 '78 1 '02 0-44 0" 11 
0"78 1 "25 0"44 0"63 
0"78 0"18 0"43 0 '28 
0"76 0"65 0 '40 0-67 
0"75 0"60 0"37 0 '67 
0"71 0"56 0"37 0"51 
0-70 0"63 0"34 0"80 
0 '69 1 "09 0"34 0"71 
0"67 1 "07 0"30 0"21 
0"67 0"45 0"29 0"33 
0"65 0"64 0"27 0"41 
0"62 0"38 0"26 0"25 
0'57 0"25 0"00 0"10 
0"57 0"48 
0"55 0"56 

Table 3. For each test structure the (sin 0)/A upper 
limit and the residual values according to Wilson's 
estimates (RESw) and to equations (11) (RES,)  are 

given 

C o d e  [(sin 0 ) / h ]  . . . .  ( , ~ - ' )  RES,,  RES,, 

G E N I  0.70 0.40 0.14 
G E N 2  0.70 0.43 0.18 
PGE2 0.57 0.46 0.43 
S K N I  0.63 0.41 0-30 
L O G A N 1 N  0-67 0.48 0.42 
FEGAS 0.81 0.74 0-54 
SALEX 0-59 0.45 0.34 
PIC 0-43 0.49 0-32 
T I P O R F  0.44 0.60 0-46 

Analysis of Table 3 shows that: 
(a) (11) is always better than Wilson's estimate; 
(b) The efficiency of (11) is quite good for model 

structures, where data are without errors and resol- 
ution is high. The presence of heavy atoms does not 
remarkably disturb the efficiency of the formula. 

(c) The efficiency declines with real data. Struc- 
tural complexity and low resolution of data also 
weaken the effectiveness of the formula. 

(d) The presence of structural regularities disturbs 
the efficiency of the formulas. FEGAS is affected by 
a strong psuedotranslational symmetry (the pseudo- 
translation vector is u = ~c; the estimated percentage 
of electrons suffering from pseudotranslationai 
symmetry is 43%). The high value of RESw is a 
consequence of the large dispersion of the I Ei's 
around the average value (hypercentric distribution). 
The application of (11) produces a great but not 
completely satisfactory improvement. 

In order to obtain further insight into the behaviour 
of the residual RES,,  for each test structure we have 
arranged the reflections in decreasing order of Rc,~,c. 
The values of RES, are then calculated as a function 
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of  N,,  where N, is the number  of  reflections with 
Rc.~c larger than a given threshold.  In Fig. 1 the trend 
of  RES ,  is shown for the nine test structures:  in 
accordance  with our  observat ions  in Table 2, RES ,  
general ly increases with N, 

The above considerat ions  suggest that  est imating 
non-measured  diffraction magni tudes  is rather  com- 
plicated. The statistical relat ionships which can be 
used are of  order  N -~ (and therefore ra ther  weak) 

6 o i  R E S n  

.6 

5 0 ,  , / , 9  

4 0 ,  / , • / .. .. 
, ~  .. 

~, / , ,  __">" . . . .  _-%, 
. ~ / , . !  L_.._.._ . . . . . . .  " . . . . .  

20~ 

tO J . . . . .  - .:- " ~ ~ ' ~ -  ... 

i " 

. . . . .  r ~  . . . . .  l ~o  

3 

~7 

N r 
~r, ho  " =>obo . . . . .  2 , sbo  

Fig. 1. RES, is plotted as a function of N,, where N, is the number 
of reflections with Re,it larger than a given threshold. The curves 
correspond to the following test structures: (1) GEN1; 
(2) GEN2; (3) PGE2; (4) SKN1; (5) LOGANIN; (6) FEGAS; 
(7) SALEX; (8) PIC; (9) TIPORF. 

and do not offer a sat isfactory solution o f the  problem, 
unless some supplementa ry  structural  informat ion  is 
available.  

The initial contr ibut ion by L. Favia is kindly 
acknowledged.  
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Abstract 

Procedures are described to extract the values of  
individual  phases from est imated structure invariants.  
The l inear-equat ion and least-squares methods  are 
used as two separate  techniques in these procedures.  
The l inear-equat ion method  uses a linearly indepen- 
dent  set of  equat ions,  with arbitrari ly assigned 
integers, which are sufficient in number  to solve for 
values of  an equal number  of  phases.  The least- 
squares method  uses a set of  overdetermined 
equat ions in which an ' integer problem'  has to be 
considered.  The assembly of  these two techniques 
with a novel integer- t r ia l -and-error  method shows a 
remarkable  ability to overcome the ' integer problem' .  
As a test of  the whole procedure ,  phases were extrac- 
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ted from three-phase  structure invariants calculated 
from the theoretical  da ta  for the pla t inum chloride 
derivative of  cytochrome C55o. 

Introduction 

The structure invariant  continues to play a central 
role in the direct-methods approach  to the phase 
problem. Over  the past few years,  several investigators 
have a t tempted  to derive new probabil ist ic  form- 
ulae to improve s t ructure- invariant  est imations 
(Haup t iman ,  1982; Giacovazzo,  1983). Some of  these 
formulae,  for example  the formula  for anomalous-  
scattering data ,  yield unique estimates for the struc- 
ture invariants  themselves,  as opposed  to their 
cosines. 

© 1991 International Union of Crystallography 


